Intended Use
For the quantitative kinetic determination of α-amylase activity in human serum using the Tokyo Boeki Medisys Inc. Biolis 24i analyzer.

Clinical Significance
The determination of amylase activity in serum is most commonly performed for the diagnosis and treatment of diseases of the pancreas.

Method History
Amylase was first measured quantitatively by an iodometric method introduced by Wohlgemuth in 1908.

The method was extended by Somogyi in 1939 to standardize the amounts of starch and iodine. His work became the basis for the widely-used Amyloclastic and Saccharogenic methods introduced in 1956 and 1960, respectively.

Disadvantages of these methods included long incubation times, endogenous glucose interference, and unstable reaction colors resulting in poor reproducibility and reliability.

Rinderknecht et al. introduced a dye-coupled starch method in 1967 that was relatively simple to perform. However, the procedure used an insoluble substrate, lacked linearity, and still required centrifugation or filtration.

Turbidimetric procedures have been introduced that are relatively fast but require special instrumentation and have difficulty producing stable and reproducible starch solutions.

Several enzymatic procedures have been suggested, including one that used the defined substrate maltotetraose. These methods represented significant improvement in amylase measurement, but were still subject to relatively long pre-incubation times, possible endogenous glucose interference, and a series of other potential interferences with the formation of NADH.

Wallenfels et al. introduced p-nitrophenylglycosides as defined substrates for α-amylase determination in a procedure that eliminated interference from endogenous glucose and pyruvate. A variety of coupling enzymes have been used to hydrolyze the short chain oligosaccharides resulting from the amylase activity in the specimen.

Unfortunately, these coupling enzymes contained residual amylase activity that adversely affected the stability of these reagents. The present method is based on the use of a chromagenic substrate, 2-chloro-p-nitrophenol linked with maltotriose. The reaction of amylase with this substrate results in the formation of 2-chloro-p-nitrophenol, that can be measured spectrophotometrically at 405 nm. This reaction proceeds very rapidly, no coupling enzymes are required, and the reaction is not readily inhibited by endogenous factors.

Principle

α-amylase

10 CNPG3 \(\rightarrow \) 9 CNP + CNPG2 + 9G3 + G

α-Amylase hydrolyses the 2-chloro-p-nitrophenyl-α-D-maltotrioside (CNPG3) to release 2-chloro-p-nitrophenol and form 2-chloro-p-nitrophenyl-α-D-maltotrioside (CNPG2), maltotriose (G3) and glucose (G). The rate of increase in absorbance is measured at 405 nm and is proportional to the α-amylase activity in the sample.

Reagents
MES Buffer, pH 6.0±0.1, 2-Chloro-p-Nitrophenyl-α-D-Maltotrioside 1.8 mM, Sodium Chloride 350 mM, Calcium Acetate 6 mM, Potassium Thiocyanate 900 mM, Sodium Azide 0.1% (See ‘Precautions’).

Reagent Preparation
The reagent is provided as a ready-to-use liquid. No preparation is required.

Reagent Storage
1. Store reagent at 2-8°C.
2. The reagent is stable until the expiration date if stored as directed.

Reagent Deterioration
Do not use if:
1. The absorbance of the working reagent is greater than 0.600 when measured at 405 nm against water in a cuvette with a 1 cm path length.
2. The reagent fails to meet stated parameters of performance.
3. The reagent is turbid or displays other evidence of bacterial contamination.

Precautions
1. This reagent is intended for in vitro diagnostic use only.
2. This reagent contains potassium thiocyanate. POISON. Do not ingest.

Specimen Collection and Handling
1. Unheparinized serum is the specimen of choice. Specimens should be collected as per NCCLS document H4-A3.
2. Anticoagulants, such as Citrate and EDTA, bind calcium that is needed for amylase activity. Plasma with these anticoagulants should not be used.
3. Amylase in serum is reported stable for one week at room temperature (18-25°C) and for two months when stored refrigerated at 2-8°C.

Interferences
1. A number of drugs and substances affect the determination of amylase. Young et al have published a comprehensive list of such substances.
2. Macrogamylase in the specimen can cause a measured hyperamylasemia, that could lead to a false diagnosis of acute pancreatitis. However, no clinical symptoms are usually associated with macroamylasemia.
3. Bilirubin (30mg/dl) and hemoglobin (500mg/dl) have each been found to have a negligible effect on this procedure.

Materials Provided
Amylase (CNPG3) reagent.

Materials Required but not Provided
1. Analyzer
2. Operation manual
3. Chemistry control, catalog number C7592-100

Test Parameters

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Name</th>
<th>Amylase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Information</td>
<td>Aspiration</td>
</tr>
<tr>
<td></td>
<td>Units</td>
<td>Decimals</td>
</tr>
<tr>
<td></td>
<td>U/L</td>
<td>Kind: Single</td>
</tr>
<tr>
<td></td>
<td>Sample</td>
<td>Reagent1 Vol</td>
</tr>
<tr>
<td></td>
<td>Analysis</td>
<td>Reagent2</td>
</tr>
<tr>
<td></td>
<td>Type</td>
<td>Rate</td>
</tr>
<tr>
<td></td>
<td>Main W. Length1</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Main W. Length2</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>Method</td>
<td>Factor</td>
</tr>
<tr>
<td></td>
<td>Corr, Slope</td>
<td>Inter</td>
</tr>
<tr>
<td></td>
<td>Y=[1.000][X + [0.000]]</td>
<td>CV%</td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td>Monitor</td>
</tr>
<tr>
<td></td>
<td>Type</td>
<td>Factor: 350</td>
</tr>
<tr>
<td></td>
<td>Data Process</td>
<td>3.000</td>
</tr>
</tbody>
</table>

Read

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Absorbance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Sub</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Factor Blank Correction

1

Prozone Check

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Limit%</th>
<th>Lh</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auto Rerun SW

<table>
<thead>
<tr>
<th>On/Off</th>
<th>Auto Rerun (Result)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/Off</td>
<td>OFF</td>
</tr>
<tr>
<td>Lower</td>
<td>Higher</td>
</tr>
<tr>
<td>Serum</td>
<td>1</td>
</tr>
<tr>
<td>Urine</td>
<td>Plasma</td>
</tr>
</tbody>
</table>
Liquid Amylase (CNPG3) Reagent Set

<table>
<thead>
<tr>
<th>Bottle Size (ml)</th>
<th>24 Items</th>
<th>36 Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reagent2 R1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reagent2 R2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auto Rerun Condition (Absorbance) Absorbance Range

- Lower: ON
- Higher: ON

Panic Range

- Male
 - Serum
 - Urine
 - Plasma
- Female
 - Serum
 - Urine
 - Plasma

User Defined Limitations

1. Samples that exceed the linearity limit (2000 U/L) should be diluted with an equal volume of saline, re-assayed and multiply the result by two.
2. Macroamylase in the specimen can cause a measured hyperamylasemia, that could lead to a false diagnosis of acute pancreatitis. However, no clinical symptoms are usually associated with macroamylasemia.

Calibration

The procedure is standardized by means of the millimolar absorbivity of 2-chloro-p-nitrophenol that is 12.9 at 405 nm under the test conditions described.

Calculations (Example)

\[
\text{Abs./min x TV} = \frac{\text{U/L} \times \alpha\text{-amylase}}{\text{MMA} \times \text{SV} \times \text{LP}}
\]

Where:
- \(\Delta\text{Abs./min}\) = Absorbance difference per minute
- \(\text{TV} = \) Total assay volume (1.025 ml)
- \(\text{1000} = \) Conversion of U/ml to U/L
- \(\text{MMA} = \) Millimolar absorbivity of 2-chloro-p-nitrophenol (12.9)
- \(\text{SV} = \) Sample volume (0.025 ml)
- \(\text{LP} = \) Light path (1 cm)

\[
\Delta\text{Abs./min} = \frac{\text{Abs./min} \times 3178}{U/L \times \text{MMA} \times \text{SV} \times \text{LP}}
\]

Example: If \(\Delta\text{Abs./min} = 0.03\), then \(0.03 \times 3178 = 95\) U/L

Quality Control

The validity of the reaction should be monitored by use of control sera with known normal and abnormal amylase values. These controls should be run at least with every working shift in which amylase assays are performed. It is recommended that each laboratory establish its own frequency of control determination. Quality control requirements should be performed in conformance with local, state, and/or Federal regulations or accreditation requirements.

Expected Values

Serum: 25-125 U/L for a similar kinetic method. Since the expected values are affected by age, sex, diet and geographical location, each laboratory is strongly urged to establish its own reference range for this procedure.

Performance

1. Linearity: 1-2,000 U/L
2. Comparison: A study was performed between the Biolis 24i and a similar analyzer and method, resulting in the following:

<table>
<thead>
<tr>
<th>Method</th>
<th>Amylase</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>91</td>
</tr>
<tr>
<td>Mean Amylase (U/L)</td>
<td>147.3</td>
</tr>
<tr>
<td>Range (U/L)</td>
<td>17 - 1846</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>306.6</td>
</tr>
<tr>
<td>Regression Analysis</td>
<td>(y = 1.014x + 3.2)</td>
</tr>
<tr>
<td>Correlation Coefficient</td>
<td>0.9998</td>
</tr>
</tbody>
</table>

References

Manufactured by Pointe Scientific, Inc.
5449 Research Drive, Canton, MI 48188

European Authorized Representative:
Obelis s.a.
Boulevard Général Wahis 53
1030 Brussels, BELGIUM
Tel: (32)2.732.59.54 Fax:(32)2.732.60.03 email: mail@obelis.net

Rev. 6/17 P803-A7564-BIO