Intended Use
For the quantitative determination of creatinine in serum on Hitachi analyzers. For in vitro diagnostic use only.

Clinical Significance
Creatinine assays are most frequently performed to aid in the determination of renal function.

Method History
In 1886, Jaffe described a method for the determination of creatinine involving a protein free filtrate and a reaction with picric acid in alkaline solution. Although several methods have been described since then, the classic Jaffe reaction is still the most widely used. The Jaffe reaction is subject to interferences by a number of substances, including protein and glucose. Modifications of the procedure have been developed to combat the drawbacks. The kinetic procedures have become popular because they are fast, simple and avoid interference. The present method is based on a modification of the above procedure, incorporating a surfactant and other ingredients to minimize protein and carbohydrate interferences.

Principle
Alkali
Creatinine + Sodium Picrate <=> Creatinine-picrate complex (yellow-orange)

Creatinine reacts with picric acid in alkaline conditions to form a color complex that absorbs at 510 nm. The rate of formation of color is proportional to the creatinine in the sample.

Reagents
Creatinine R1 Reagent: Alkaline Buffer
Creatinine R2 Reagent: Picric Acid 40mM, Surfactant

Reagent Storage and Stability
1. Both reagents are stored at room temperature.
2. Combined (working) reagent is stable for up to one month at room temperature if tightly capped.

Reagent Deterioration
Do not use if:
1. The reagent is cloudy (contaminated).
2. The reagent fails to achieve assigned values on fresh control sera.

Precautions
1. This reagent is for in vitro diagnostic use only.
2. Picric Acid is a strong oxidizing agent. Avoid contact with skin. WIPE ANY SPILLAGE, SINCE EVAPORATED PICRIC ACID IS EXPLOSIVE.
3. All specimens and controls should be handled in accordance with good laboratory practices using appropriate precautions as described in the CDC/NIH Manual, “Biosafety in Microbiological and Biomedical Laboratories”, 2nd Ed. 1988, HHS Publication No. (CDC) 88-8395.

Specimen Collection and Storage
1. Serum is recommended.
2. Creatinine in serum is stable for twenty-four hours at refrigerated temperatures (2-8°C) and for several months when frozen (-20°C) and protected from evaporation and contamination.
3. 24-hour urine specimens must be preserved with 15 grams of boric acid.
4. Specimen collection should be carried out in accordance with NCCLS M29-T2. No method can offer complete assurance that human blood samples will not transmit infection. Therefore, all blood samples should be considered potentially infectious.

Interferences
1. A number of substances affect the accuracy of creatinine. See Young, et al.
2. The method is not influenced (< 10%) by hemoglobin values up to 500mg/dl, bilirubin levels up to 20mg/dl and lipemia / Triglycerides (Intralipid used to simulate) to 1000mg/dl. The studies were performed on the Hitachi 717™ analyzer following a modification of the guidelines contained in NCCLS document EP7-P.

Materials Provided
1. Creatinine R1 Reagent
2. Creatinine R2 Reagent

Materials Required but not Provided
1. Accurate pipetting devices
2. Timer
3. Test tubes/rack
4. Spectrophotometer with a temperature controlled cuvette
5. Heating Block (37°C).

Procedure (Automated-Hitachi 717)

```
TEST NAME  [CRE]
ASSAY CODE  [2-POINT]:[30]-[50]
SAMPLE VOLUME  [10] [5]
R1 VOLUME  [250] [100] [NO]
R2 VOLUME  [50] [100] [No]
WAVELENGTH  [570] [505]
CALIBRATION  [LINEAR] [0] [0]
STD (1) CONC-POS  [0.00] [1]
STD (2) CONC-POS  [''] ['']
STD (3) CONC-POS  [''] ['']
STD (4) CONC-POS  [''] ['']
STD (5) CONC-POS  [''] ['']
STD (6) CONC-POS  [''] ['']
SD LIMIT  [0.1]
DUPLICATE LIMIT  [100]
SENSITIVITY LIMIT  [0]
ABS LIMIT (INC/DEC)  [4500] [INCREASE]
PROZONE LIMIT  [0] [LOWER]
EXPECTED VALUE  [''] ['']
PANIC VALUE  [''] ['']
INSTRUMENT FACTOR  [1.0]
```

* Indicates user defined parameter.

Set K-Factor to 747
Limitations

Samples with values above 25 mg/dl should be diluted 1:1, re-assayed and results multiplied by two.

Calibration

Use an NIST-traceable creatinine standard (2.5mg/dl) or serum calibrator. The procedure should be calibrated according to the instrument manufacturer’s calibration instructions. If control results are found to be out of range, the procedure should be re-calibrated.

Calculation

The creatinine value of the unknown is determined by comparing its absorbance change with that of a known standard.

\[
\text{Mg/dl} = \frac{\Delta \text{Abs (Unknown)}}{\Delta \text{Abs (Standard)}} \times \text{Concentration of Std. (mg/dl)}
\]

Where: \(\Delta \text{Abs.} = \text{Absorbance change between readings (A}_2 - \text{A}_1\)

Sample Calculation

If:

\[
\Delta \text{Abs/Unknown} = 0.02 \\
\Delta \text{Abs/Standard} = 0.05 \\
\text{Conc. of Standard} = 2.5 \text{ mg/dl}
\]

Then:

\[
0.02 \times 2.5 = 1.0 \text{ mg/dl creatinine} \\
0.05
\]

Quality Control

The integrity of the reaction should be monitored by use of normal and abnormal control sera with known creatinine values. These controls should be run at least with every working shift in which creatinine assays are performed. It is recommended that each laboratory establish their own frequency of control determination.

Expected Values

0.40 – 1.40 mg/dl

It is highly recommended that each laboratory establish its own reference range.

Performance (Data generated using Roche Hitachi™ analyzers.)

1. Assay Range: 0.1-25.0 mg/dL
2. Correlation: A patient correlation of 126 specimens over the range of about 0.4 to 11.3 mg/dL creatinine yielded \(y = 1.09 x + 0.02, r^2 = 0.998\) and S.E. = 0.22.
3. Precision: Precision studies were performed following a modification of the guidelines which are contained in the NCCLS document EP5-T2.

<table>
<thead>
<tr>
<th></th>
<th>Within Day</th>
<th></th>
<th>Day to Day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
<td>C.V.%</td>
</tr>
<tr>
<td>1.9</td>
<td>0.04</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>0.07</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

References

Manufactured by Pointe Scientific, Inc.
5449 Research Drive, Canton, MI 48188

European Authorized Representative: Obelis s.a.
Boulevard Général Wahis 53
1030 Brussels, BELGIUM
Tel: (32)2.732.59.54 Fax:(32)2.732.60.03 email: mail@obelis.net

Rev. 12/12 P803-HC739-01